

Database Security

Attacks on Databases &
Best Practices to Prevent them

Database Security

● Why is it important?
● Contains valuable & sensitive information

● Backbone of most companies

Database Security Risks

● Excessive Privileges on Accounts
● Users can do much more than they need to

● Privelege Abuse

● Unprotected backup data
● Unmaintained databases

Database Security Risks

● Database injection attacks
● SQL/NoSQL injection attacks

● Weak Authentication
● Brute-force attacks, etc...

● Human error
● Social engineering, reusing passwords, etc...

Best Practices

● Excessive Privileges on Accounts
➔ Managing user access rights
➔ Query-level access control

– Define specific read/write functions
– Triggers

● Privilege abuse
➔ Control policies on how data is accessed
➔ Time of day, location, volume of data, etc...

Best Practices

● Unprotected backup data
➔ Archive and encrypt backup data

● Unmaintained databases
➔ Patching to fill security holes
➔ Use Intrusion Prevention Systems (IPS) to

monitor and block known exploits

Best Practices

● Weak Authentication
➔ Use of modern hashing schemes (Argon2, etc..)
➔ 2-way Authentication

● Human error
➔ Training employees

● Detect phishing attacks
● Internet & E-Mail usage
● Password management

SQL Injection Attacks

● Especially important if the DB has a web
interface

● „an attacker submits information that has been
deliberately formulated in such a way that it
results in that website misinterpreting it and
taking unintended actions“
https://www.esecurityplanet.com/threats/what-is-sql-injection.html

SQL Injection Attacks

https://imgs.xkcd.com/comics/exploits_of_a_mom.png

SQL Injection Attacks

● Example
● Code:

– String query = "SELECT * FROM Accounts

 WHERE username='" + username + "'

 AND password='" + password + "'";

● Input: - Username = "1' OR '1' = '1"
 - Password = "' OR '' = '"

● Result:
– Query = "SELECT * FROM Accounts

 WHERE username='1' OR '1' = '1'

 AND password ='' OR '' = ''";

SQL Injection Attacks

● Example
● Code:

– String query = "SELECT * FROM Accounts

 WHERE username='" + username + "'

 AND password='" + password + "'";

● Input: - Username = "Joe');DROP TABLE Accounts; --"

● Result:
– Query = "SELECT * FROM Accounts

 WHERE username='Joe');DROP TABLE Accounts;

 --AND password =''";

SQL Injection Attacks

● Check your website for vulnerabilities
● Automated SQL Injection Attack Tools

– Havij (ITSecTeam, an Iranian security company)
– SQLmap (open source; sqlmap.org)
– jSQL (open source; github.com/ron190/jsql-

injection)
– TyrantSQL (open source; GUI version of

SQLmap; sourceforge.net/projects/tyrantsql?
source=directory)

SQL Injection Attacks

● Countermeasures:
● Input sanitization

– Check the input for dangerous characters
– E.g. escape ' or "
– Careful! Characters can be encoded differently,

but still be interpreted by your system
● Example Login over HTTP GET
● Login.html?user=Joe';Drop Table Accounts;--

OR
● Login.html?user=Joe%27%3bDrop%20Table

%20Accounts%3b--

SQL Injection Attacks

● Countermeasures:
● Validation

– Check if the input data is in the format you want it
to be

– E.g.
● E-mails contain an @
● ID containing only numbers
● Length of the input

– White- or Blacklist characters

SQL Injection Attacks

● Countermeasures:
● Prepared statements

– Is given a SQL statement when created
– Precompiled by the DBMS

● Faster if the same statement is executed multiple
times

– Allows the use of parameters

SQL Injection Attacks

● Countermeasures:
● Prepared statements (Parameterized Queries)

– Represented by markers:
● @ : ASP.NET
● : : PHP
● ? : JAVA

– Parameter values are added to the query at
execution time in a controlled manner

● "The SQL engine checks each parameter that it is
correct for its column and are treated literally, and
not as part of the SQL to be executed"

SQL Injection Attacks

● Countermeasures
● Prepared statements

– In Java per functions: setTYPE(Index, Value)
● setString, setLong, setDouble, setBytes, ...

– Index is the number of the ? placeholder
● Beginning with 1

SQL Injection Attacks

● Are prepared statements 100% safe?
● Not necessarily...
● The inner workings depend on the driver

– Some only emulate prepared statements
● Constructing the query using string

concatenation with user input makes it unsafe
– But! Parameters are not allowed for identifiers

SQL Injection Attacks

● Are prepared statements 100% safe?
● 2nd order injection attacks

– 1st order: the user input data is unsafe
– But what if the database data is also unsafe?

● It originates from the user most of the time anyway
● If "Joe');DROP TABLE Accounts; --" is a stored user

name
– Do not use the user name with a simple

string concat query!
➔ Proper use of prepared statements prevent most injection

attacks, but there are always other attack vectors!

References

● https://www.esecurityplanet.com/threats/what-is-sql-injection.html

● https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html

● http://javabypatel.blogspot.com/2017/06/how-prepared-statement-works-
internally-java.html

● https://security.stackexchange.com/questions/15214/are-prepared-
statements-100-safe-against-sql-injection

● https://www.bcs.org/content/ConWebDoc/8852

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

